Analyzing the Potential of Source Sentence Reordering in Statistical Machine Translation
نویسندگان
چکیده
We analyze the performance of source sentence reordering, a common reordering approach, using oracle experiments on German-English and English-German translation. First, we show that the potential of this approach is very promising. Compared to a monotone translation, the optimally reordered source sentence leads to improvements of up to 4.6 and 6.2 BLEU points, depending on the language. Furthermore, we perform a detailed evaluation of the different aspects of the approach. We analyze the impact of the restriction of the search space by reordering lattices and we can show that using more complex rule types for reordering results in better approximation of the optimally reordered source. However, a gap of about 3 to 3.8 BLEU points remains, presenting a promising perspective for research on extending the search space through better reordering rules. When evaluating the ranking of different reordering variants, the results reveal that the search for the best path in the lattice performs very well for German-English translation. For English-German translation there is potential for an improvement of up to 1.4 BLEU points through a better ranking of the different reordering possibilities in the reordering lattice.
منابع مشابه
Sentence Type Based Reordering Model for Statistical Machine Translation
Many reordering approaches have been proposed for the statistical machine translation (SMT) system. However, the information about the type of source sentence is ignored in the previous works. In this paper, we propose a group of novel reordering models based on the source sentence type for Chinese-toEnglish translation. In our approach, an SVM-based classifier is employed to classify the given...
متن کاملA Hybrid Machine Translation System Based on a Monotone Decoder
In this paper, a hybrid Machine Translation (MT) system is proposed by combining the result of a rule-based machine translation (RBMT) system with a statistical approach. The RBMT uses a set of linguistic rules for translation, which leads to better translation results in terms of word ordering and syntactic structure. On the other hand, SMT works better in lexical choice. Therefore, in our sys...
متن کاملA Reordering Approach for Statistical Machine Translation
This paper presents a Markov based hierarchical reordering scheme for lexical reordering to incorporate into phrase-based statistical machine translation system. The goal is to reorder the words and phrases in source language syntactic structure into their corresponding target language syntactic order for making translation easy. Without reordering during language translation, sentences can onl...
متن کاملNovel Reordering Approaches in Phrase-Based Statistical Machine Translation
This paper presents novel approaches to reordering in phrase-based statistical machine translation. We perform consistent reordering of source sentences in training and estimate a statistical translation model. Using this model, we follow a phrase-based monotonic machine translation approach, for which we develop an efficient and flexible reordering framework that allows to easily introduce dif...
متن کاملSyntax and Structure in Statistical Translation
In this paper, we describe a sourceside reordering method based on syntactic chunks for phrase-based statistical machine translation. First, we shallow parse the source language sentences. Then, reordering rules are automatically learned from source-side chunks and word alignments. During translation, the rules are used to generate a reordering lattice for each sentence. Experimental results ar...
متن کامل